Heap Sort was invented by J. W. J. Williams in 1964. It uses a binary heap data structure to efficiently find and remove the maximum element. The algorithm first builds a max-heap from the input, then repeatedly extracts the maximum element and rebuilds the heap. While it has guaranteed O(n log n) complexity and uses O(1) extra space, it typically performs slower than Quick Sort in practice due to poor cache locality.
def heap_sort(arr):
n = len(arr)
for i in range(n // 2 - 1, -1, -1):
heapify(arr, n, i)
for i in range(n - 1, 0, -1):
arr[0], arr[i] = arr[i], arr[0]
heapify(arr, i, 0)
return arr
def heapify(arr, n, i):
largest = i
left, right = 2 * i + 1, 2 * i + 2
if left < n and arr[left] > arr[largest]:
largest = left
if right < n and arr[right] > arr[largest]:
largest = right
if largest != i:
arr[i], arr[largest] = arr[largest], arr[i]
heapify(arr, n, largest)
function heapSort(arr) {
const n = arr.length;
for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {
heapify(arr, n, i);
}
for (let i = n - 1; i > 0; i--) {
[arr[0], arr[i]] = [arr[i], arr[0]];
heapify(arr, i, 0);
}
return arr;
}
function heapify(arr, n, i) {
let largest = i;
const left = 2 * i + 1, right = 2 * i + 2;
if (left < n && arr[left] > arr[largest]) largest = left;
if (right < n && arr[right] > arr[largest]) largest = right;
if (largest !== i) {
[arr[i], arr[largest]] = [arr[largest], arr[i]];
heapify(arr, n, largest);
}
}
func heapSort(arr []int) []int {
n := len(arr)
for i := n/2 - 1; i >= 0; i-- {
heapify(arr, n, i)
}
for i := n - 1; i > 0; i-- {
arr[0], arr[i] = arr[i], arr[0]
heapify(arr, i, 0)
}
return arr
}
func heapify(arr []int, n, i int) {
largest := i
left, right := 2*i+1, 2*i+2
if left < n && arr[left] > arr[largest] {
largest = left
}
if right < n && arr[right] > arr[largest] {
largest = right
}
if largest != i {
arr[i], arr[largest] = arr[largest], arr[i]
heapify(arr, n, largest)
}
}
fn heap_sort<T: Ord>(arr: &mut [T]) {
let n = arr.len();
for i in (0..n / 2).rev() {
heapify(arr, n, i);
}
for i in (1..n).rev() {
arr.swap(0, i);
heapify(arr, i, 0);
}
}
fn heapify<T: Ord>(arr: &mut [T], n: usize, i: usize) {
let mut largest = i;
let left = 2 * i + 1;
let right = 2 * i + 2;
if left < n && arr[left] > arr[largest] { largest = left; }
if right < n && arr[right] > arr[largest] { largest = right; }
if largest != i {
arr.swap(i, largest);
heapify(arr, n, largest);
}
}